BROOKLYN, New York – A team of materials scientists at NYU Tandon School of Engineering has developed the first process to 3D print components of syntactic foam — extremely strong and lightweight composites used in vehicles, airplanes, and ships. Their breakthrough holds particular promise for submarines because it will enable manufacturers to print components with complex shapes capable of surviving stresses at greater depths.
Syntactic foams, a mixture of billions of microscopic hollow glass or ceramic spheres in epoxy or plastic resin, are widely used in submarines like James Cameron’s Deepsea Challenger and the next-generation Alvin deep-sea explorer because of their remarkable buoyancy and strength.
In two papers published in JOM, the Journal of the Minerals, Metals & Materials Society, Nikhil Gupta, an associate professor of mechanical and aerospace engineering, student researchers in his Composite Materials and Mechanics Lab at NYU Tandon’s Mechanical Engineering Department, and collaborators in India reported they had developed syntactic-foam filaments and processes to 3D print them using off-the-shelf commercial printers.
Currently, syntactic-foam parts are made by injection molding, and the parts must be joined with adhesives and fasteners, introducing vulnerabilities. 3D printing — also called additive manufacturing — could allow manufacturers to make complex parts such as vehicle shells and internal structures as single units, making them far stronger. Led by Ashish Kumar Singh, a doctoral student under Gupta, the team described how they overcame hurdles to additive manufacturing, such as the tendency of microspheres to crush during the mixing process and to clog the printer nozzle. They also demonstrated the recyclability of the filaments, making them environmentally friendly.
Read more: 3D Printin3-D PRINTING BREAKTHROUGH HELP SUBMARINES DIVE DEEPER
thumbnail courtesy of engineering.nyu.edu