New research could literally squeeze more power out of solar cells

Artists impression of squeezing more power out of solar cells by physically deforming each of the crystals in the semiconductors used by photovoltaic cells.
Credit: University of Warwick/Mark Garlick

Physicists at the University of Warwick have published new research in the journal Science that could literally squeeze more power out of solar cells by physically deforming each of the crystals in the semiconductors used by photovoltaic cells.

The paper entitled the “Flexo-Photovoltaic Effect” was written by Professor Marin Alexe, Ming-Min Yang, and Dong Jik Kim who are all based in the University of Warwick’s Department of Physics.

The Warwick researchers looked at the physical constraints on the current design of most commercial solar cells which place an absolute limit on their efficiency. Most commercial solar cells are formed of two layers creating at their boundary a junction between two kinds of semiconductors, p-type with positive charge carriers (holes which can be filled by electrons) and n-type with negative charge carriers (electrons).

When light is absorbed, the junction of the two semiconductors sustains an internal field splitting the photo-excited carriers in opposite directions, generating a current and voltage across the junction. Without such junctions, the energy cannot be harvested and the photo-exited carriers will simply quickly recombine eliminating any electrical charge.

That junction between the two semiconductors is fundamental to getting power out of such a solar cell but it comes with an efficiency limit. This Shockley-Queisser Limit means that of all the power contained in sunlight falling on an ideal solar cell in ideal conditions only a maximum of 33.7% can ever be turned into electricity.

There is, however, another way that some materials can collect charges produced by the photons of the sun or from elsewhere. The bulk photovoltaic effect occurs in certain semiconductors and insulators where their lack of perfect symmetry around their central point (their non-centrosymmetric structure) allows generation of voltage that can be actually larger than the band gap of that material (the band gap is the gap between the valence band highest range of electron energies in which electrons are normally present at absolute zero temperature and the conduction band where electricity can flow).

Read more at: New research could literally squeeze more power out of solar cells

thumbnail courtesy of phys.org