Magnetic materials are the backbone of modern digital information technologies, such as hard-disk storage. A University of Washington-led team has now taken this one step further by encoding information using magnets that are just a few layers of atoms in thickness. This breakthrough may revolutionize both cloud computing technologies and consumer electronics by enabling data storage at a greater density and improved energy efficiency.
In a study published online May 3 in the journal Science, the researchers report that they used stacks of ultrathin materials to exert unprecedented control over the flow of electrons based on the direction of their spins—where the electron “spins” are analogous to tiny, subatomic magnets. The materials that they used include sheets of chromium tri-iodide (CrI3), a material described in 2017 as the first ever 2-D magnetic insulator. Four sheets—each only atoms thick—created the thinnest system yet that can block electrons based on their spins while exerting more than 10 times stronger control than other methods.
“Our work reveals the possibility to push information storage based on magnetic technologies to the atomically thin limit,” said co-lead author Tiancheng Song, a UW doctoral student in physics.
In related research, published April 23 in Nature Nanotechnology, the team found ways to electrically control the magnetic properties of this atomically thin magnet.
Read more: Atomically thin magnetic device could lead to new memory technologies
thumbnail courtesy of phys.org