Polymer crystals hold key to record-breaking energy transport

polymeric-nanostructures
Image showing light emission from the polymeric nanostructures and schematic of a single nanostructure. Credit: University of Bristol

Scientists from the universities of Bristol and Cambridge have found a way to create polymeric semiconductor nanostructures that absorb light and transport its energy further than previously observed.

This could pave the way for more flexible and more efficient solar cells and photodetectors.

The researchers, whose work appears in the journal Science, say their findings could be a “game changer” by allowing the energy from sunlight absorbed in these materials to be captured and used more efficiently.

Lightweight semiconducting plastics are now widely used in mass market electronic displays such as those found in phones, tablets, and flat-screen televisions. However, using these materials to convert sunlight into electricity, to make solar cells, is far more complex.

The photo-excited states—which is when photons of light are absorbed by the semiconducting material—need to move so that they can be “harvested” before they lose their energy in less useful ways. These excitations typically only travel ca. 10 nanometres in polymeric semiconductors, thus requiring the construction of structures patterned on this length-scale to maximize the “harvest”.

In the chemistry labs of the University of Bristol, Dr. Xu-Hui Jin and colleagues developed a novel way to make highly ordered crystalline semiconducting structures using polymers.

While in the Cavendish Laboratory in Cambridge, Dr. Michael Price measured the distance that the photo-excited states can travel, which reached distances of 200 nanometres—20 times further than was previously possible.

200 nanometres is especially significant because it is greater than the thickness of the material needed to completely absorb ambient light thus making these polymers more suitable as “light harvesters” for solar cells and photodetectors.

Read more: Polymer crystals hold key to record-breaking energy transport

thumbnail courtesy of phys.org