Researchers in China have made a new hybrid conductive material — part elastic polymer, part liquid metal — that can be bent and stretched at will. Circuits made with this material can take most two-dimensional shapes and are also non-toxic.
“These are the first flexible electronics that are at once highly conductive and stretchable, fully biocompatible, and able to be fabricated conveniently across size scales with micro-feature precision,” says senior author Xingyu Jiang, a professor at the National Center for Nanoscience and Technology. “We believe that they will have broad applications for both wearable electronics and implantable devices.”
The material that the researchers fashioned is called a metal-polymer conductor (MPC), so called because it is a combination of two components with very different yet equally desirable properties. The metals, in this case, are not familiar conductive solids, such as copper, silver, or gold, but rather gallium and indium, which exist as thick, syrupy liquids that still permit electricity to flow. The researchers found that embedding globs of this liquid metal mixture within a supporting network of silicone-based polymer yielded mechanically resilient materials with enough conductivity to support functioning circuits.
Up close, the structure of the MPC can be likened to round liquid metal islands floating in a sea of polymer, with a liquid metal mantle underneath to ensure full conductivity. The researchers successfully tried out different MPC formulations in a variety of applications, including in sensors for wearable keyboard gloves and as electrodes for stimulating the passage of DNA through the membranes of live cells.
Read more: Stretchable metal-polymer bio-devices conductors
PDF paper: Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices
thumbnail courtesy of sciencedaily.com