Biocompatible anti-burn nanofibers that act as ‘living bandages’

Elizabeth Permyakova, one of the project members and laboratory scientists. Credit: NUST MISIS, one of the project members and laboratory scientists. Credit: NUST MISIS

A group of NUST MISIS’s young scientists has presented a new therapeutic material based on nanofibers made of polycaprolactone modified with a thin-film antibacterial composition and plasma components of human blood. Biodegradable bandages made from these fibers will accelerate the growth of tissue cells twice as quickly, contributing to the normal regeneration of damaged tissues, as well as preventing the formation of scars in cases of severe burns.

In regenerative medicine, and particularly in burn therapy, the effective regeneration of damaged skin tissue and the prevention of scarring are usually the main goals. Scars form when skin is badly damaged, whether through a cut, burn, or a skin problem such as acne or fungal infection.

Scar tissue mainly consists of irreversible collagen and significantly differs from the tissue it replaces, having reduced functional properties. For example, scars on skin are more sensitive to ultraviolet radiation, are not elastic, and do not develop sweat glands or hair follicles.

A solution to this medical problem was proposed by the researchers from the NUST MISIS Inorganic Nanomaterials Laboratory, led by Ph.D. Anton Manakhov, a senior researcher. The scientist created multi-layer “bandages” made of biodegradable fibers and multifunctional bioactive nanofilms, which prevent scarring and accelerate tissue regeneration.

Read more: Scientists develop biocompatible anti-burn nanofibers that act as ‘living bandages’

thumbnail courtesy of phys.org