CERN 3D Printing Components for Particle Accelerators

CERN 3D Printing Components for Particle Accelerators
Pictures of the i3D BPM after manufacturing (but before re-machining). On the left, the cylindrical electrodes can be seen inside the BPM

Several years ago, there was quite a stir around the world when the European Organization for Nuclear Research (CERN) began work with the Large Hadron Collider, the world’s largest and most powerful particle collider. Some people feared that the collider could generate a black hole that could swallow the entire planet, and while it’s been established that that isn’t possible, it’s still a rumor that comes up from time to time. While the Large Hadron Collider is the most famous machine at CERN, the facility actually operates six particle accelerators and one particle decelerator.

With all of that machinery going, there is always going to be a need for repairs and replacement components. A group of researchers recently conducted a study in which they 3D printed a stripline beam position monitor (BPM), a standard component in particle accelerators. Last year, these researchers reported preliminary results showing that 3D printing is compatible with Ultra-High Vacuum, and will be reporting additional results shortly. For this study, they wanted to simply show that 3D printing, which they refer to in the paper as i3D, could be used to simplify an ordinary particle accelerator component.

“One of the advantages of i3D is that it allows making complex shapes and thus allows topological optimizations of shapes for a given function (for example sustain the force due to the pressure difference) with minimal material,” the researchers state.

The researchers used the topology optimization software INSPIRE from Altair to alter the BPM’s flange to reduce the weight of the component. By optimizing that part, they were able to reduce the weight of the BPM by 40%. 3D printing turned out to be an easier mode of production than traditional methods, as well.

“One of the difficulties of BPM manufacturing by traditional means was the thin cylindrical striplines: to have the correct relationship between the body diameter and the electrodes diameter, the electrodes had to be less than 2 mm thick but attempt to make this with traditional manufacturing methods using a lathe failed as this was too thin,” the researchers continue. “The same electrodes with a 2 mm thickness were manufactured without any difficulty by i3D.”

To avoid having to use supports, the BPM was manufactured with a vertical beam axis and a taper added underneath the electrical feedthrough. It was 3D printed in only one part, whereas a traditionally manufactured BPM needs to be made in four parts and welded together. This also allowed for the part to be made 20 mm shorter, as no space had to be left for the welding of the flanges on the body.

Read more: CERN 3D Printing Components for Particle Accelerators

thumbnail courtesy of 3dprint.com

Related Links

3-D printed multimaterial with programmed stiffness