Prototyping Tools for Spacewalks—How Zortrax Ecosystem Works at NASA

3D printed prototype of an EVA GoPro casing. Credits: NASA/JSC.

The International Space Station (ISS) is the largest human-made body in the low Earth orbit. Sixteen modules launched and assembled from 1998 to 2011, provide 32,898 cu ft of pressurized volume for a crew of 6 astronauts to do research in physics, astrobiology, astronomy, space medicine, life sciences, and many other fields. Keeping the ISS operational sometimes requires maintenance to be done outside the station, in the harsh and hostile space environment. Astronauts do this during extravehicular activities or EVA’s, commonly referred to as spacewalks.

So far, there have been over 200 such spacewalks devoted to adding new modules and keeping the existing ones in good technical shape—more than 1250 hours spent in space. All this work would not have been possible without thoroughly designed tools. Designing them is a job of engineers at NASA Johnson Space Center in Houston aided by Zortrax M200 and M300 3D printers.

BACKGROUND

NASA divides its tasks down into two main categories: nominal, and off-nominal. The former are all things the agency is comfortably able to plan for in advance. Engineers can take their time in prototyping tools for nominal tasks as most of the relevant variables are known beforehand: what are the mission’s technical requirements, what are the conditions the tool is going to be used in, what it is supposed to accomplish. Since the development process of space-related technologies is relatively lengthy, the most of nominal tools being used at the ISS today are described in EVA Tools and Equipment Reference Book issued by NASA JSC back in November 1993. There has been no need to update it since then.

Read more: https://zortrax.com/stories/case-studies/3d-printing-nasa-tools/