Quantum Mechanics for Scientists & Engineers 2

Description

This course covers key topics in the use of quantum mechanics in many modern applications in science and technology, introduces core advanced concepts such as spin, identical particles, the quantum mechanics of light, the basics of quantum information, and the interpretation of quantum mechanics, and covers the major ways in which quantum mechanics is written and used in modern practice.

quantum-mechanicsIt follows on directly from the QMSE-01 “Quantum Mechanics for Scientists and Engineers” course and is also accessible to others who have studied some quantum mechanics at the equivalent of a first junior or senior college-level physics quantum mechanics course. All of the material for the QMSE-01 course is also provided as a resource. The course should prepare participants well to understand quantum mechanics as it is used in a wide range of current applications and areas and provide a solid grounding for deeper studies of specific more advanced areas.

Course syllabus

Quantum mechanics in crystals

Crystal structures, the Bloch theorem that simplifies quantum mechanics in crystals, and other useful concepts for understanding semiconductor devices, such as density of states, effective mass, quantum confinement in nanostructures, and important example problems like optical absorption in semiconductors, a key process behind all optoelectronics.

Methods for one-dimensional problems

How to understand and calculate tunneling current. The transfer matrix technique, a very simple and effective technique for calculating quantum mechanical waves and states.

Spin and identical particles

The purely quantum mechanical idea of spin, and how to represent and visualize it. The general ideas of identical particles in quantum mechanics, including fermions and bosons, their properties and the states of multiple identical particles.

Quantum mechanics of light

Representing light quantum mechanically, including the concept of photons, and introducing the ideas of annihilation and creation operators.

Read more: Quantum Mechanics for Scientists & Engineers 2

Image courtesy of stanford.edu