The contemporary process of layer-wise additive manufacture is nevertheless slow and impacts the rate of object fabrication for objects with ridged surfaces. Continuous stereolithographic printing can overcome the limits by increasing print speeds to generate objects with smooth surfaces. Now writing in Science Advances, Martin P. de Beer, Harry L. van der Laan, and co-workers demonstrate a new method for rapid and continuous stereolithographic additive manufacture (SLA) in a single shot by interfacing the raw material with two wavelengths of light.
The materials scientists developed a method using two sources of light; one to solidify the resin and another ultraviolet light to prevent resin curing on the device window during object fabrication. A zone without unwanted solidification (inhibition volumes) allowed efficient use of resins and boosted the speed of 3-D printing in a single exposure, in contrast to layer-wise, conventional manufacture. A variety of materials, including thermoplastics, polymer resins, and inorganic powders have been used as media for additive manufacture (AM), with a variety of methods including material extrusion, to powder bed fusion and binder jetting. In particular, stereolithographic AM (SLA) was of interest in the study since it is based on a patterned illumination source to cure cross-sections of the desired geometry.
Read more: Rapid and continuous 3-D printing with light
Image courtesy of phys.org