Researchers improve textile composite manufacturing

3D-scanning-equipment-to-analyze-textile-composites
Engineering professor Abbas Milani and graduate student Armin Rashidi use 3D scanning equipment to analyze textile composites. Credit: UBC Okanagan

While wearing a crisply ironed, wrinkle-free shirt makes a good impression, researchers at UBC’s Okanagan campus are working to solve the issue of wrinkling when it comes to making textile composites.

Textile composites are known for their strength and durability. But as Abbas Milani, a professor in UBC Okanagan’s School of Engineering explains, a simple wrinkle in the manufacturing process can significantly alter the end product—sometimes diminishing its strength by 50 per cent.

Milani says wrinkling is one of the most common flaws in textile composites, which are widely used for prototypes, as well as mass production within prominent aerospace, energy, automotive and marine applications.

To iron out the problem, researchers at UBC’s Composite Research Network-Okanagan have investigated several de-wrinkling methods and have discovered that they can improve their effectiveness by pulling the materials in two directions simultaneously during the manufacturing process. They did this by creating a custom-made biaxial fixture—a clamp that stretches the textile taught and removes unwanted bumps and folds.

“The challenge was to avoid unwanted fibre misalignment or fiber rupture while capturing the out-of-plane wrinkles,” says graduate student Armin Rashidi. “Manufacturers who use these types of composites are looking for more information about their mechanical behavior, especially under combined loading scenarios.”

The research included stretching the material and then using specialized image processing and 3D scanning to analyze the required forces and its impact on the wrinkling and de-wrinkling of the material.

Read more: Researchers improve textile composite manufacturing

thumbnail courtesy of phys.org