First detailed measurements of key factors related to high-temperature superconductivity

Scientists-make-first-detailed-measurements-of-key-factors-related-to-high-temperature-superconductivity
A new study reveals how coordinated motions of copper (red) and oxygen (grey) atoms in a high-temperature superconductor boost the superconducting strength of pairs of electrons (white glow), allowing the material to conduct electricity without any loss at much higher temperatures. The discovery opens a new path to engineering higher-temperature superconductors. (Greg Stewart/SLAC National Accelerator Laboratory)

In superconducting materials, electrons pair up and condense into a quantum state that carries electrical current with no loss. This usually happens at very low temperatures. Scientists have mounted an all-out effort to develop new types of superconductors that work at close to room temperature, which would save huge amounts of energy and open a new route for designing quantum electronics. To get there, they need to figure out what triggers this high-temperature form of superconductivity and how to make it happen on demand.

Now, in independent studies reported in Science and Nature, scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University report two important advances: They measured collective vibrations of electrons for the first time and showed how collective interactions of the electrons with other factors appear to boost superconductivity.

Carried out with different copper-based materials and with different cutting-edge techniques, the experiments lay out new approaches for investigating how unconventional superconductors operate.

“Basically, what we’re trying to do is understand what makes a good superconductor,” said co-author Thomas Devereaux, a professor at SLAC and Stanford and director of SIMES, the Stanford Institute for Materials and Energy Sciences, whose investigators led both studies.

“What are the ingredients that could give rise to superconductivity at temperatures well above what they are today?” he said. “These and other recent studies indicate that the atomic lattice plays an important role, giving us hope that we are gaining ground in answering that question.”

The high-temperature puzzle
Conventional superconductors were discovered in 1911, and scientists know how they work: Free-floating electrons are attracted to a material’s lattice of atoms, which has a positive charge, in a way that lets them pair up and flow as electric current with 100 percent efficiency. Today, superconducting technology is used in MRI machines, maglev trains, and particle accelerators.

But these superconductors work only when chilled to temperatures as cold as outer space. So when scientists discovered in 1986 that a family of copper-based materials known as cuprates can superconduct at much higher, although still quite chilly, temperatures, they were elated.

The operating temperature of cuprates has been inching up ever since – the current record is about 120 degrees Celsius below the freezing point of water – as scientists explore a number of factors that could either boost or interfere with their superconductivity. But there’s still no consensus about how the cuprates function.

Read more: Scientists make first detailed measurements of key factors related to high-temperature superconductivity

Thumbnail courtesy of stanford.edu

Relate Links: 

Molecular clock could greatly improve smartphone navigation

Paired-up electrons can be manipulated in semiconductors

Harry Potter had magic. We have metamaterials.

Scientists use neutrons to look at boost thermoelectric efficiency