Researchers from the University of Maryland, the National Institute of Standards and Technology (NIST), the National High Magnetic Field Laboratory (National MagLab) and the University of Oxford have observed a rare phenomenon called re-entrant superconductivity in the material uranium ditelluride. The discovery furthers the case for uranium ditelluride as a promising material for use in quantum computers.
Nicknamed “Lazarus superconductivity” after the biblical figure who rose from the dead, the phenomenon occurs when a superconducting state arises, breaks down, then re-emerges in a material due to a change in a specific parameter—in this case, the application of a very strong magnetic field. The researchers published their results on October 7, 2019, in the journal Nature Physics.
Once dismissed by physicists for its apparent lack of interesting physical properties, uranium ditelluride is having its own Lazarus moment. The current study is the second in as many months (both published by members of the same research team) to demonstrate unusual and surprising superconductivity states in the material.
“This is a very recently discovered superconductor with a host of other unconventional behavior, so it’s already weird,” said Nicholas Butch, an adjunct assistant professor of physics at UMD and a physicist at the NIST Center for Neutron Research. “[Lazarus superconductivity] almost certainly has something to do with the novelty of the material. There’s something different going on in there.”
The previous research, published on August 16, 2019 in the journal Science, described the rare and exotic ground state known as spin-triplet superconductivity in uranium ditelluride. The discovery marked the first clue that uranium ditelluride is worth a second look, due to its unusual physical properties and its high potential for use in quantum computers.
“This is indeed a remarkable material and it’s keeping us very busy,” said Johnpierre Paglione, a professor of physics at UMD, the director of UMD’s Center for Nanophysics and Advanced Materials (CNAM; soon to be renamed the Quantum Materials Center) and a co-author of the paper. “Uranium ditelluride may very well become the ‘textbook’ spin-triplet superconductor that people have been seeking for dozens of years and it likely has more surprises in store. It could be the next strontium ruthenate—another proposed spin-triplet superconductor that has been studied for more than 25 years.”
Superconductivity is a state in which electrons travel through a material with perfect efficiency. By contrast, copper—which is second only to silver in terms of its ability to conduct electrons—loses roughly 20% power over long-distance transmission lines, as the electrons bump around within the material during travel.
Lazarus superconductivity is especially strange, because strong magnetic fields usually destroy the superconducting state in the vast majority of materials. In uranium ditelluride, however, a strong magnetic field coupled with specific experimental conditions caused Lazarus superconductivity to arise not just once, but twice.
For Butch, Paglione and their team, the discovery of this rare form of superconductivity in uranium ditelluride was serendipitous; the study’s lead author, CNAM Research Associate Sheng Ran, synthesized the crystal accidentally while attempting to produce another uranium-based compound. The team decided to try some experiments anyway, even though previous research on the compound hadn’t yielded anything unusual.
The team’s curiosity was soon rewarded many times over. In the earlier Science paper, the researchers reported that uranium ditelluride’s superconductivity involved unusual electron configurations called spin triplets, in which pairs of electrons are aligned in the same direction. In the vast majority of superconductors, the orientations—called spins—of paired electrons point in opposite directions. These pairs are (somewhat counterintuitively) called singlets. Magnetic fields can more easily disrupt singlets, killing superconductivity.
Read more: “Lazarus Superconductivity” Observed in uranium ditelluride
Image courtesy of umd.edu
Related Links:
Cuprates are found to carry current in a way never before observed