Light could make semiconductor computers a million times faster

An artist’s rendering of a pulse of circularly polarized light hitting a 2-D semiconductor, putting the electrons into a pseudospin state that could store information as part of a new, faster computing technology. Credit: Stephen Alvey/Michigan Engineering

Electron states in a semiconductor, set and changed with pulses of light, could be the 0 and 1 of future “lightwave” electronics or room-temperature quantum computers.

A technique to manipulate electrons with light could bring quantum computing up to room temperature. A team of researchers in Germany and at the University of Michigan have demonstrated how infrared laser pulses can shift electrons between two different states, the classic 1 and 0, in a thin sheet of a semiconductor.

“Ordinary electronics are in the range of gigahertz, one billion operations per second. This method is a million times faster,” said Mackillo Kira, a professor of electrical engineering and computer science at U-M. He led the theoretical part of the study, to be published in the journal Nature, collaborating with physicists at the University of Marburg in Germany. The experiment was done at the University of Regensburg in Germany.

Quantum computing could solve problems that take too long on conventional computers, advancing areas such as artificial intelligence, weather forecasting, and drug design. Quantum computers get their power from the way that their quantum-mechanical bits, or qubits, aren’t merely 1s or 0s, but they can be mixtures— known as superpositions—of these states.

Read more: Light could make semiconductor computers a million times faster

thumbnail courtesy of