Light-warping properties of hyperbolic metamaterials

hyperbolic metamaterial
Illustration of incident light traveling through a glass prism before entering and after exiting the hyperbolic metamaterial, which is composed of stacked metal and transparent oxide layers. By sending incident light through the glass prism, the researchers minimize the mismatch between the wavelengths of light in air and in the hyperbolic metamaterial. This enables the light to penetrate farther into the metamaterial and more accurately assess its electromagnetic properties. Credit: NIST

Manipulating light in a variety of ways—shrinking its wavelength and allowing it to travel freely in one direction while stopping it cold in another—hyperbolic metamaterials have wide application in optical communications and as nanoparticle sensors. But some of the same optical properties that make these metamaterials so appealing make them frustratingly difficult to evaluate.

CNST researchers have now developed a new measurement method that circumvents this difficulty. Using an off-the-shelf glass prism to enhance the interaction of incident light with hyperbolic metamaterials, a team led by Cheng Zhang of the CNST and the University of Maryland’s NanoCenter and Henri Lezec of NIST has devised a simple and much more accurate way to determine the permittivity.

Zhang, Lezec and their colleagues, which include researchers from the J.A. Woollam Co. in Lincoln, Nebraska, and the University of Michigan in Ann Arbor, described their findings in a recent issue of ACS Photonics.

Read more: The light-warping properties of hyperbolic metamaterials

thumbnail courtesy of