A bit of a stretch… material that thickens as it’s pulled

Scientists have discovered the first synthetic material that becomes thicker – at the molecular level – as it is stretched.

Scientists have discovered the first synthetic material that becomes thicker – at the molecular level – as it is stretched
Liquid crystal elastomer with auxetic capabilities, showing its flexibility and high optical quality. Credit: Devesh Mistry

Leeds researchers have discovered a new non-porous material that has unique and inherent “auxetic” stretching properties.

There are materials in nature that exhibit auxetic capabilities, such as cat skin, the protective layer in mussel shells and tendons in the human body.

Experts have been actively researching synthetic auxetic materials for more than 30 years, but until now have only been able to create them by structuring conventional materials using complex engineering processes, including 3D printing.

These processes are time consuming, costly, and can lead to weaker, porous products.

Commercial applications
The identification of a synthetic molecular version is a major step forward for physicists, materials scientists and development companies, but researchers acknowledge that more research is needed to develop a fuller understanding of what drives the auxetic behaviour and how this behaviour can be applied commercially.

The research, led by Dr Devesh Mistry from the School of Physics and Astronomy, is published today in Nature Communications.

“Auxetics are also great at energy absorption and resisting fracture. There may be many potential applications for materials with these properties including body armour, architecture and medical equipment.”
DR DEVESH MISTRY

Dr Mistry said: “This is a really exciting discovery, which will have significant benefits in the future for the development of products with a wide range of applications.

“This new synthetic material is inherently auxetic on the molecular level and is therefore much simpler to fabricate and avoids the problems usually found with engineered products.

“But more research is needed to understand exactly how they can be used.”

“This is a really exciting discovery… But more research is needed to understand exactly how they can be used.”
DR DEVESH MISTRY

He added: “When we stretch conventional materials, such as steel bars and rubber bands they become thinner. Auxetic materials on the other hand get thicker.

“Auxetics are also great at energy absorption and resisting fracture. There may be many potential applications for materials with these properties including body armour, architecture and medical equipment.

“We have already submitted a patent and are talking to industry about the next steps.”

Expanding the potential of liquid crystals
The team discovered the yet-to-be-named material while examining the capabilities of Liquid Crystal Elastomers.

Liquid crystals are best known for their use in mobile phone and television screens and have both liquid and solid properties.

When they are linked with polymer chains to form rubbery networks, they have completely new properties and possible applications.

“Our results demonstrate a new use for liquid crystals beyond the flat screen monitors and televisions many of us are familiar with,” said Professor Helen Gleeson, study co-author and Head of Physics and Astronomy at Leeds.

“This new synthetic material is a great example of what physics research and exploring the potential of materials such as liquid crystals can discover.

“Collaboration between scientists with several areas of expertise and the extensive technical facilities we have at Leeds make this kind of exploration and discovery possible.”

Read more: A bit of a stretch… material that thickens as it’s pulled

thumbnail courtesy of leeds.ac.uk

Related Links:

Self-healing material can build itself from carbon in the air

Topological behavior of electrons in 3-D magnetic material

New ultralight material offers many uses for plastic waste

3D Systems Breakthrough Material to Enable Digital Production of Plastic Parts